Skip to Content

Updated Tesla Module RV Installation

Updated Tesla Module RV Installation

After over a year of working with these systems, I have refined my recommendation on equipment and build a little. 

IMPORTANT

Before reading further, the design in this article does not meet new requirements I have learned about the BP220,  During the design of this 2 years ago, there was no information about reverse charging with the BP.  We got away with it for a long time but this could be a fire hazard, READ MORE HERE

I will most likely be replacing mine with a relay.   

While our original Tesla battery install is working great I have had the opportunity to install a few more of these systems and get tons of questions about it. 

These systems can be constructed with numerous different components and can work with many different designs, however to keep costs down and make a safe system the following is a recommendation on one way to build a safe, cost effective Tesla Install. 

Do note that while Tesla batteries are a very high quality and safe when handled and run within operating characteristics, if something goes wrong they can be quite dangerous.  It is your responsibility to fully understand and make sure the system is safely programmed and installed if you choose to take on an install like this.  

Furthermore, this build is not endorsed or supported by any manufacturers of the compenents used in this build, and they may not provide support on an install like this if you run into trouble.

I also am not able to provide individual support on these builds. You might be able to find community support over in the Second-Life Batteries Facebook Group.

RV Tesla Battery Install - System Simplification and Improvements , Schematic Walk through

Here is a list of parts and components

The following is an update to the way I originally installed my battery.  This is not necessarily the best install option, but it is cost-effective.  This install does not utilize a full-time BMS but if you are interested in using one Batrium is coming out with a new watchmon 5 (or watchmon plus) and should be a great solution for integrating Tesla packs with a full supervisory BMS solution at a cost-effective price.  You can learn more about the Batrium BMS here.

​The main component changes in my system involve the exterior voltage and temperature monitoring to control battery shutdown.  The Victron BMV 712 was not available when I built my system, but is a far superior product to the BMV 702.  This device has the capability to control an external relay on temperature, high voltage and low voltage.  It can do even more, but these three features simplify the install if we use it to control the battery disconnect.   The below schematic shows how I recommend using this as the primary disconnecting means for battery charging.      

tesla rv electrical schematic

  The intent of operation of this install is to have the Inverter and charge controllers be programmed to not overcharge the battery.  I usually program the absorb and float to 24.00V and 23.98V or 24.5V and 24.48V respectively.  I use the 24 V setting for general usage, but in the dead of winter I push it a little to 24.5 to get a bit more power out of it for cloudy days and long nights .  These settings will appropriately charge the battery, but in the case that something went wrong with the chargers or the settings got changed we need a backup to prevent overcharging the battery (one of the most dangerous conditions)  That is where the BP220 input disconnect is used with the relays from the BMV712 to take the battery offline.   I program the BMV712 high voltage relay setting to 24.8V

The battery temperature should also be managed externally and can be done with a heating pad and a controller or I have seen some have success using these tank heating pads.       

These devices should keep the battery warm, but in the case that the battery is too cold it should not be charged and thus the relay in the BMV again can be set to switch on temp.  I set the low temp switch to 42 degrees (because at that temp something is wrong with my system) but you can use whatever you feel is safe for your setup.  The BMV712 has a temperature sensing option that is connected off the shunt and sends temp info back to the head unit.  

The only trouble with using the BMV712 relay to disable charging is that you actually need two relays for this system as the inverter charge can be disabled using one of the inputs.   ( you need to program the inverter to use an input as a charge disable, for victron this is done with a external BMS assistant).  To get two inputs from the one relay output on the BMV712 we use a DPST relay and hold the coil closed.  This is a fail safe configuration that will open and shut down charging in a failed state.  

Of course when commissioning a system like this be sure to test the system by setting temps and voltages too low and letting the BMV disconnect the system to make sure everything is working properly.  

​The rest of the system is pretty similar to how I have it drawn out in the previous posts.  You can connect the AC side from the inverter however you want but if you are connecting to a 50A 240V split phase RV a new product that might assist your install is the AM solar smart ATS.  This allows you to use a hybrid inverter automatically on a 50A system.  The only drawback to this is if you have a built in dual leg single phase generator as it will half the power output from the gen.   I have talked with them about this and they may fix it in future versions.  

List of Components

For those looking for a list of components, here it is:  

Again this is not complete and you can swap components for your system, but this is what I have used.  

 
Component Description
Model
Source
Inverter
Victron Multiplus 24/3000/70
Solar Charger option 1 ​
Victron Energy MPPT 100/50 SmartSolar*
 
*This charger will limit the system to 1400W
Solar Charger option 2
Victron Energy MPPT 250/100 SmartSolar*
 
*This charger will be good for solar up to 2800W 
Battery Monitor
Victron BMV 712 ​
Temp Sensor
BMV702/712 Temperature Sensor
Under/over-voltage disconnect (2)
Victron BP220
Main Battery Disconnect
Blue Sea 6006 Mini Disconnect ​
Bus Bars (2)
Blue Sea Systems BusBars (100A-250A)
 
I recommend the use of busbars, they help keep installations clean and distribute power well
24V-12V Converter
Victron Energy Orion 24/12-40 DC-DC
 
*If needed can get the 70A version that has lugs and is adjustable voltage
Battery Meter / Balancer
Tenergy 5-1*
 
*This is not used as a “BMS” just to periodically check and balance the batteries, You need to adapt XH connectors to the battery cells to use this device. Do not leave this plugged in as it will unbalance the battery. 
Battery Terminal Fuse holder (2)
Blue Sea 5191*
 
*These are optional but provide extra protection for the batteries during installation and handling from a short
Battery Terminal Fuses (3) 
Blue Sea 5189*
 
*These are installed at battery on lugs. If battery is shorted this will protect battery internal fuses from destroying battery
Main Fuse 
Class T 200A 
Main Fuse class T holder 
Class T fuse holder ​
Solar Fuse and holder
60A ANL holder and Fuse ​
Inline Fuse for relay
2A inline fuse of any type
DPST Relay 24V*
DPDT or DPST relay @24V coil (down to 18V)
 
*This is just a relay that turns one signal into two… we cannot put the two devices in series due to how their circuits work. 
60A inline Breaker for Solar ​
DC – 60A 24V breaker
1/0 Cable ​
However much you think you need ​
 
just a suggestion. Make sure its true 1/0AWG, not international wire standard
6AWG cable ​
Combiner – charge controller- busbar wire
1/0 Lugs ​
you need a minimum of 16
Battery Heater Pad
Water Tank Heating Pad ​
 
I have heard of people having good luck using these tank heaters. 
Solar Combiner Box 
(recommendation)
Click the image to go to the KIT page with links to products

As in the previous posts this system does not utilize a full BMS but rather relys on periodic testing of the battery to check balance with a tenergy 5-1 cell meter.  To use one of these with a tesla pack you need to either buy a pack that has standard JST-XH connectors adapted to it already or you will need to adapt it yourself. 

Dave posted a comment on my prevous post about having to adapt his battery to work with the tenergy 5-1.  Below is his recommendation and it sounds about right. ​

 If you received your Tesla Battery with the BMS Board still attached, I recommend you immediately remove it. My BMS Board was “electrically” warm when I received my Tesla Module.
The Tesla BMS wires on the Module are numbered 0 to 6, with 0 and even numbers on the top and the odd numbers on the bottom. the 0 wire is attached to the negative terminal of the battery and 1 – 6 address the different cells. Electrically, each BMS wire is additive, i.e.: between 0 and 1 is 3.5v and between 0 and 2 is 7v and 0 – 3 is 10.5v, etc. (your voltages will vary). The Tesla BMS uses two JST XH connectors, one is a 5 pin connector and the other is a 7 pin connector. I purchased a set of JST XH extension cables from Amazon, the set consisted of 2 cables each with 3, 4, 5, 6, and 7 wires. I took a 7 wire connector and a 5 wire connector and removed the male ends from each connector, I then inserted the pins from the two female connectors in a 0 – 6 sequence into the male connector. The two female connectors were attached to the two BMS leads from the Tesla Battery Module, the key to sequencing the female connectors is that Tesla used every other pin on these two connectors. So, what you wind up with is: Male pins 0 – 6 as follows: (# 1 pin top) then (# 1 pin bottom) then (# 3 pin top) then (# 3 pin bottom) then (# 5 pin top) then (# 5 pin bottom) then (# 7 pin top). The male 7- pin connector then fits right into the Tenergy BMS.

-Dave

You can also purchase these packs already modified from Jason Hughes at 057 tech.  Jason is also working on a simple BMS solution that will balance the packs and possibly have an alarm output.  It is not available yet but conceptual drawings are out and it looks great!  Keep an eye out for it at ​https://057tech.com/

​If you are considering using Tesla packs in a mobile application I hope this helps you out and gives you an idea of one way to do it.  If you want to learn more about this and other systems be sure to join us on our Second Life EV Facebook Group!  


Start Your Solar Journey!

Thinking about adding solar to your RV? Start here with our solar calculator to get an idea of what might be right for you!

Become A Mortons On The Move Insider

Join 10,000+ other adventurers to receive educating, entertaining, and inspiring articles about RV Travel Destinations, RV Gear, and Off-Grid Living to jump-start your adventures today!

Read More from the Mortons:

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Anthony

Sunday 24th of April 2022

I was just curious if you have a diagram or link to where I can buy what you used to turn on your heating pad at a set temperature that you set I have the heating pad but I don't know what circuitry or what you used to turn on the heating pad when it got to the temperature you set?

don1cobb

Monday 6th of April 2020

I have exactly the setup you described. You should not have current flowing in both directions. It worked for me for awhile and then it burned out the BP220. Since you are using the Schneider as a charger and inverter, the BP should not be connected to the Schneider leg at all. The 712 will not stop bad things from happening. In my case it just burned out the BP, but there are pictures of it actually catching fire. Not a good thing.

jeff

Sunday 5th of April 2020

Tom - I recently implemented your Tesla 24 Vdc Solar system design. I adapted the design to fit a 48 V dc I3 BMW battery. It worked fine but I BP48 (your equivalent BP 220 Battery protect) would not start up connected to my inverter (Schneider Conext SW 4048) It displayed the error code E1 (short circuit). So I connected my inverter directly to the load side of the fuse before the BP48, This resolved the problem but also configured the circuit so only current flowed in the forward direction during charge through BP48s. Which seems to be a hot topic on your site since some people think it is a no no, I don't have that issue at 48Vdc because the the solar current is so low (20Amps) but the inverter has more charging current and is directly connected. I will rely on the 712 disabling the inverter when the 712 see a over voltage condition. Not sure what you think about reverse current? It seems fine to me to source the reverse current as long as the current is controlled (fuse) and the BP device can handle the power. What do you think? Your design slightly modified for 48 Vdc has been working well for several days. Thanks for all the help!!! Catching Air Jeff

Abude

Sunday 5th of April 2020

Use the BP only in the correct direction. Use a second BP. A Victronn moderator stated they could catch fire. It was stated in here somewhere with the link. Even with a low current you should not take chances. It is disappointing that victron does not provide this information in the documentation.

Aaron Schultz

Wednesday 15th of January 2020

I need some help with my install. I have 4 tesla batteries 2 in series, 2 in parallel. I have currently 6-300w panels that in the winter in colorado peak at about 1000 watts. My issue is the chargers not switching into float mode. I set these at 48.8V and the bmv712 smart is showing 49.3V. I have the victron 10kva quattro, 150-45 smart charger, Bmv712 smart all running through the color control GX. In standby mode the inverter draws about 75w constantly. There is no A/C input currently. Also there really is no large draw during the days because we are finishing our 0Bus-to-RV conversion and not traveling yet. I have also noticed that when the BMV712 Relay is closed, it is still allowing charge into the batteries. When the BMV712 is triggered is it supposed to allow charging and not discharging, or separate the batteries completely from the system? Thanks for any help. I am just trying to figure out the relationship of the victron products to my battery setup, so I don't incinerate the entire bus before we use it, :).

Donald Cobb

Wednesday 15th of January 2020

You need to use the remote switch setting to control the Victron MPPT. And then you need to have the remote switch setup between the 712 and the MPPT. I have my setup to cutoff at 48.75 volts as the absorption voltage and the float voltage at 48. You have a different configuration than I do, so I'm not sure about how to control the Quattro or GX. Hope this helps.

Aaron Schultz

Wednesday 15th of January 2020

I should have included my AH setting is 466ah and my battery voltage capacity is set for 50.4V. Should I change my battery voltage capacity to 49V so it appears to the charger to be 100% at 49V? Then change my settings from 90% SOC to 100% SOC at the 49V? Again, thanks for any help.

Thomas A Geriak

Friday 10th of January 2020

I dont use the 057 tap board, but it will work directly. I just soldered a JSTXH7 header wired directly to the Tesla balancing wires and the balancing cable to the SBMS0. You can also use Molex or any connectors you like.

This site uses Akismet to reduce spam. Learn how your comment data is processed.